expedient measures - definition. What is expedient measures
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

MEASURE OR PROBABILITY DISTRIBUTION WHOSE SUPPORT HAS ZERO LEBESGUE (OR OTHER) MEASURE
Singular measures; Mutually Singular measures

Old measures         
DANCES MADE FOR FESTIVALS
Old Measures
Old measures, or simply measures, were a group of dances performed at ceremonial and festive occasions in Early Modern Britain. Some of the dances included in the measures were the pavane and the almain, and dances such as the galliard and the courante are also mentioned as accompanying or following the traditional measures.
2016 Virginia ballot measures         
Virginia ballot measures, 2016
The 2016 Virginia State Elections took place on Election Day, November 8, 2016, the same day as the U.S.
List of Colorado ballot measures         
  • 206x206px
  • Commercial marijuana operations, such as the one pictured, were legalized as a result of 2012's Amendment 64
WIKIMEDIA LIST ARTICLE
Ballot measures of Colorado
The following is a list of statewide initiatives and referenda modifying state law and proposing state constitutional amendments in Colorado, sorted by election. The Colorado Legislative Council, an organ of the Colorado General Assembly, maintains a comprehensive list at its website.

ويكيبيديا

Singular measure

In mathematics, two positive (or signed or complex) measures μ {\displaystyle \mu } and ν {\displaystyle \nu } defined on a measurable space ( Ω , Σ ) {\displaystyle (\Omega ,\Sigma )} are called singular if there exist two disjoint measurable sets A , B Σ {\displaystyle A,B\in \Sigma } whose union is Ω {\displaystyle \Omega } such that μ {\displaystyle \mu } is zero on all measurable subsets of B {\displaystyle B} while ν {\displaystyle \nu } is zero on all measurable subsets of A . {\displaystyle A.} This is denoted by μ ν . {\displaystyle \mu \perp \nu .}

A refined form of Lebesgue's decomposition theorem decomposes a singular measure into a singular continuous measure and a discrete measure. See below for examples.